def sparse_dense(summary):
text_copy = copy.deepcopy(summary)
"""
Find a suitable value for the hyperparameter, some random value like 0.5, or based
on some heuristic like (rank of original matrix/10), or (max_singular_value of the
original matrix / 20)
"""
_, s, _ = randomized_svd(summary, 1, n_iter=5)
hyperparameter = s[0] / 50
term_document_matrix_rank = np.linalg.matrix_rank(summary)
iterations = int(term_document_matrix_rank / 10)
A_new = dense(text_copy, hyperparameter, 0.02, iterations)
return A_new
sparse_to_dense.py 文件源码
python
阅读 23
收藏 0
点赞 0
评论 0
评论列表
文章目录