def _compute_cost_grad(self, layer, n_samples, activations, deltas,
coef_grads, intercept_grads):
"""Compute the cost gradient for the layer."""
coef_grads[layer] = safe_sparse_dot(activations[layer].T,
deltas[layer]) / n_samples
coef_grads[layer] += (self.alpha * self.layers_coef_[layer])
intercept_grads[layer] = np.mean(deltas[layer], 0)
return coef_grads, intercept_grads
评论列表
文章目录