multilayer_perceptron.py 文件源码

python
阅读 31 收藏 0 点赞 0 评论 0

项目:Identify-Numbers 作者: jinhang 项目源码 文件源码
def _forward_pass(self, activations, with_output_activation=True):
        """Perform a forward pass on the network by computing the values
        of the neurons in the hidden layers and the output layer.

        Parameters
        ----------
        activations: list, length = n_layers - 1
            The ith index of the list holds the values of the ith layer.

        with_output_activation : bool, default True
            If True, the output passes through the output activation
            function, which is either the softmax function or the
            logistic function
        """
        # Iterate over the hidden layers
        for i in range(self.n_layers_ - 1):
            activations[i + 1] = safe_sparse_dot(activations[i],
                                                 self.layers_coef_[i])
            activations[i + 1] += self.layers_intercept_[i]

            # For the hidden layers
            if i + 1 != self.n_layers_ - 1:
                hidden_activation = ACTIVATIONS[self.activation]
                activations[i + 1] = hidden_activation(activations[i + 1])

        # For the last layer
        if with_output_activation:
            output_activation = ACTIVATIONS[self.out_activation_]
            activations[i + 1] = output_activation(activations[i + 1])

        return activations
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号