def processing_sector_cashflow_count(root_path, symbols, dates):
stock_info = ts.get_stock_basics()
sector_columns = list(set(stock_info['industry'].values.tolist()))
sector_count = pd.DataFrame(columns=sector_columns, index=dates)
sector_count.index.name = 'date'
sector_count = sector_count.fillna(0)
pbar = tqdm(total=len(symbols))
for symbol in symbols:
startTime = time.time()
out_file = root_path + "/Data/CSV/cashflow/" + symbol + ".csv"
column = stock_info[stock_info.index == symbol]["industry"][0]
if os.path.exists(out_file) == False:
pbar.update(1)
#print(symbol, column)
continue
df_symbol = pd.read_csv(out_file, index_col=["date"])
df = df_symbol['buy_amount'] - df_symbol["sell_amount"]
sector_count[column] = sector_count[column].add(df, fill_value=0)
outMessage = '%-*s processed in: %.4s seconds' % (6, symbol, (time.time() - startTime))
pbar.set_description(outMessage)
pbar.update(1)
pbar.close()
sector_count = sector_count.sort_index(ascending=False)
sector_count.to_csv("cashflow_sector.csv")
Filter_Stock_Cashflow_CHN.py 文件源码
python
阅读 22
收藏 0
点赞 0
评论 0
评论列表
文章目录