def showAnns(self, anns):
"""
Display the specified annotations.
:param anns (array of object): annotations to display
:return: None
"""
if len(anns) == 0:
return 0
if 'segmentation' in anns[0]:
datasetType = 'instances'
elif 'caption' in anns[0]:
datasetType = 'captions'
if datasetType == 'instances':
ax = plt.gca()
ax.set_autoscale_on(False)
polygons = []
color = []
for ann in anns:
c = (np.random.random((1, 3))*0.6+0.4).tolist()[0]
if type(ann['segmentation']) == list:
# polygon
for seg in ann['segmentation']:
poly = np.array(seg).reshape((len(seg)/2, 2))
polygons.append(Polygon(poly))
color.append(c)
else:
# mask
t = self.imgs[ann['image_id']]
if type(ann['segmentation']['counts']) == list:
rle = mask.frPyObjects([ann['segmentation']], t['height'], t['width'])
else:
rle = [ann['segmentation']]
m = mask.decode(rle)
img = np.ones( (m.shape[0], m.shape[1], 3) )
if ann['iscrowd'] == 1:
color_mask = np.array([2.0,166.0,101.0])/255
if ann['iscrowd'] == 0:
color_mask = np.random.random((1, 3)).tolist()[0]
for i in range(3):
img[:,:,i] = color_mask[i]
ax.imshow(np.dstack( (img, m*0.5) ))
if 'keypoints' in ann and type(ann['keypoints']) == list:
# turn skeleton into zero-based index
sks = np.array(self.loadCats(ann['category_id'])[0]['skeleton'])-1
kp = np.array(ann['keypoints'])
x = kp[0::3]
y = kp[1::3]
v = kp[2::3]
for sk in sks:
if np.all(v[sk]>0):
plt.plot(x[sk],y[sk], linewidth=3, color=c)
plt.plot(x[v==1], y[v==1],'o',markersize=8, markerfacecolor=c, markeredgecolor='k',markeredgewidth=2)
plt.plot(x[v==2], y[v==2],'o',markersize=8, markerfacecolor=c, markeredgecolor=c, markeredgewidth=2)
p = PatchCollection(polygons, facecolor=color, linewidths=0, alpha=0.4)
ax.add_collection(p)
p = PatchCollection(polygons, facecolor="none", edgecolors=color, linewidths=2)
ax.add_collection(p)
elif datasetType == 'captions':
for ann in anns:
print ann['caption']
评论列表
文章目录