def run_epoch(session, model, data, eval_op, verbose=False):
"""Runs the model on the given data."""
epoch_size = ((len(data) // model.batch_size) - 1) // model.num_steps
start_time = time.time()
costs = 0.0
accs = 0.0
iters = 0
# ?????????,??op:zero_state??
# tuple(num_layors*[batch_size,size])
lstm_state_value = session.run(model.initial_state)
for step, (x, y) in enumerate(reader.ptb_iterator(data, model.batch_size, model.num_steps)):
feed_dict = {}
feed_dict[model.input_data] = x
feed_dict[model.targets] = y
# foreach num = num_layors
for i, (c, h) in enumerate(model.initial_state):
# feed shape([batch_zie=20,size=200])
feed_dict[c] = lstm_state_value[i].c
feed_dict[h] = lstm_state_value[i].h
# feed_dict{x,y,c1,h1,c2,h2}
cost, acc, lstm_state_value, _ = session.run([model.cost, model.accuracy, model.final_state, eval_op],
feed_dict)
accs += acc
costs += cost # batch?????????cost
iters += model.num_steps
if verbose and step % (epoch_size // 10) == 10:
print("%.3f perplexity: %.3f speed: %.0f wps" %
(step * 1.0 / epoch_size, np.exp(costs / iters),
iters * model.batch_size / (time.time() - start_time)))
print("Accuracy:", accs / iters)
return np.exp(costs / iters), accs / iters
评论列表
文章目录