lstm.py 文件源码

python
阅读 52 收藏 0 点赞 0 评论 0

项目:dlbench 作者: hclhkbu 项目源码 文件源码
def run_epoch(session, m, data, eval_op, verbose=False):
  """Runs the model on the given data."""
  epoch_size = ((len(data) // m.batch_size) - 1) // m.num_steps
  start_time = time.time()
  costs = 0.0
  iters = 0
  print('m.initial_state:', m.initial_state)
  state = session.run(m.initial_state) #.eval()
  step = 0
  for step, (x, y) in enumerate(reader.ptb_iterator(data, m.batch_size,
                                                    m.num_steps)):
    cost, state, _ = session.run([m.cost, m.final_state, eval_op],
                                 {m.input_data: x,
                                  m.targets: y,
                                  m.initial_state: state})
    costs += cost
    iters += m.num_steps

    if verbose and step % (epoch_size // 10) == 10:
      print("%.3f perplexity: %.3f speed: %.0f wps" %
            (step * 1.0 / epoch_size, np.exp(costs / iters),
             iters * m.batch_size / (time.time() - start_time)))

  print("Time for one epoch, %d iters: %.4f seconds" %
            (step+1, time.time() - start_time))
  average_batch_time = (time.time() - start_time)/(step+1)
  print("Average time per minibatch in this epoch: %.4f seconds" % average_batch_time)

  return np.exp(costs / iters), average_batch_time
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号