def __init__(self, incomings, coeffs=Normal(std=0.01, mean=1.0), cropping=None, **kwargs):
super(AdaptiveElemwiseSumLayer, self).__init__(incomings, T.add,
cropping=cropping, **kwargs)
'''
if isinstance(coeffs, list):
if len(coeffs) != len(incomings):
raise ValueError("Mismatch: got %d coeffs for %d incomings" %
(len(coeffs), len(incomings)))
else:
coeffs = [coeffs] * len(incomings)
'''
self.coeffs = []
for i in range(len(incomings)):
coeff = theano.shared(np.float32(1.0), 'adacoeff{}'.format(i))
self.coeffs.append(self.add_param(coeff, coeff.shape, trainable=True, scaling_param=True))
评论列表
文章目录