def pd(num_layers=2,num_filters=32,filter_size=(3,3),pad=1,stride = (1,1),nonlinearity=elu,style='convolutional',bnorm=1,**kwargs):
input_args = locals()
input_args.pop('num_layers')
return {key:entry if type(entry) is list else [entry]*num_layers for key,entry in input_args.iteritems()}
# Possible Conv2DDNN convenience function. Remember to delete the C2D import at the top if you use this
# def C2D(incoming = None, num_filters = 32, filter_size= [3,3],pad = 'same',stride = [1,1], W = initmethod('relu'),nonlinearity = elu,name = None):
# return lasagne.layers.dnn.Conv2DDNNLayer(incoming,num_filters,filter_size,stride,pad,False,W,None,nonlinearity,False)
# Shape-Preserving Gaussian Sample layer for latent vectors with spatial dimensions.
# This is a holdover from an "old" (i.e. I abandoned it last month) idea.
评论列表
文章目录