eval_utils.py 文件源码

python
阅读 25 收藏 0 点赞 0 评论 0

项目:self-critical.pytorch 作者: ruotianluo 项目源码 文件源码
def language_eval(dataset, preds, model_id, split):
    import sys
    sys.path.append("coco-caption")
    annFile = 'coco-caption/annotations/captions_val2014.json'
    from pycocotools.coco import COCO
    from pycocoevalcap.eval import COCOEvalCap

    encoder.FLOAT_REPR = lambda o: format(o, '.3f')

    if not os.path.isdir('eval_results'):
        os.mkdir('eval_results')
    cache_path = os.path.join('eval_results/', model_id + '_' + split + '.json')

    coco = COCO(annFile)
    valids = coco.getImgIds()

    # filter results to only those in MSCOCO validation set (will be about a third)
    preds_filt = [p for p in preds if p['image_id'] in valids]
    print('using %d/%d predictions' % (len(preds_filt), len(preds)))
    json.dump(preds_filt, open(cache_path, 'w')) # serialize to temporary json file. Sigh, COCO API...

    cocoRes = coco.loadRes(cache_path)
    cocoEval = COCOEvalCap(coco, cocoRes)
    cocoEval.params['image_id'] = cocoRes.getImgIds()
    cocoEval.evaluate()

    # create output dictionary
    out = {}
    for metric, score in cocoEval.eval.items():
        out[metric] = score

    imgToEval = cocoEval.imgToEval
    for p in preds_filt:
        image_id, caption = p['image_id'], p['caption']
        imgToEval[image_id]['caption'] = caption
    with open(cache_path, 'w') as outfile:
        json.dump({'overall': out, 'imgToEval': imgToEval}, outfile)

    return out
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号