def run():
log.info('Run freeze restore')
y = tf.Variable([float(88.8), float(5)], name='y1')
# print(y.op.node_def)
init_op = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init_op)
# sess.run(y)
g = sess.graph
g_def = g.as_graph_def()
# print node names
# print([n.name for n in g_def.node])
# constants
constants = graph_util.convert_variables_to_constants(
sess, g_def, ['y1'])
# serialize
s = constants.SerializeToString()
# print(len(g_def.node))
print_nodes(g.as_graph_def(), 'before restore:')
_ = restore_graph(s)
print_nodes(g.as_graph_def(), 'after restore:')
t = g.get_tensor_by_name('restore/y1:0')
sess.run(y.assign(y + t))
print(sess.run(y))
# print(len(g_def.node))
# print(sess.run(y.assign([float(99.9)])))
# print(n)
# print(sess.run(y.assign(n)))
# g2 = tf.Graph()
# g2_def = g2.as_graph_def()
# print([n.name for n in g2_def.node])
# run()
评论列表
文章目录