def test_novel_deltas_macro(self):
asset_info = asset_infos[0][0]
base_dates = pd.DatetimeIndex([
pd.Timestamp('2014-01-01'),
pd.Timestamp('2014-01-04')
])
baseline = pd.DataFrame({
'value': (0, 1),
'asof_date': base_dates,
'timestamp': base_dates,
})
expr = bz.data(baseline, name='expr', dshape=self.macro_dshape)
deltas = bz.data(baseline, name='deltas', dshape=self.macro_dshape)
deltas = bz.transform(
deltas,
value=deltas.value + 10,
timestamp=deltas.timestamp + timedelta(days=1),
)
nassets = len(asset_info)
expected_views = keymap(pd.Timestamp, {
'2014-01-03': repeat_last_axis(
np.array([10.0, 10.0, 10.0]),
nassets,
),
'2014-01-06': repeat_last_axis(
np.array([10.0, 10.0, 11.0]),
nassets,
),
})
cal = pd.DatetimeIndex([
pd.Timestamp('2014-01-01'),
pd.Timestamp('2014-01-02'),
pd.Timestamp('2014-01-03'),
# omitting the 4th and 5th to simulate a weekend
pd.Timestamp('2014-01-06'),
])
with tmp_asset_finder(equities=asset_info) as finder:
expected_output = pd.DataFrame(
list(concatv([10] * nassets, [11] * nassets)),
index=pd.MultiIndex.from_product((
sorted(expected_views.keys()),
finder.retrieve_all(asset_info.index),
)),
columns=('value',),
)
self._run_pipeline(
expr,
deltas,
expected_views,
expected_output,
finder,
calendar=cal,
start=cal[2],
end=cal[-1],
window_length=3,
compute_fn=op.itemgetter(-1),
)
评论列表
文章目录