def __get_MCL_model(self):
modelsI=[]
modelsP=[]
for i in range(len(self.Incurred.data.columns)):
modelsI.append(cl.WRTO(self.Incurred.data.iloc[:,i].dropna(), self.Paid.data.iloc[:,i].dropna(), w=1/self.Incurred.data.iloc[:,i].dropna()))
modelsP.append(cl.WRTO(self.Paid.data.iloc[:,i].dropna(), self.Incurred.data.iloc[:,i].dropna(), w=1/self.Paid.data.iloc[:,i].dropna()))
q_f = np.array([item.coefficient for item in modelsI])
qinverse_f = np.array([item.coefficient for item in modelsP])
rhoI_sigma = np.array([item.sigma for item in modelsI])
rhoP_sigma = np.array([item.sigma for item in modelsP])
#y = np.log(rhoI_sigma[:-1])
#x = np.array([i + 1 for i in range(len(y))])
#x = sm.add_constant(x)
#OLS = sm.OLS(y,x).fit()
#tailsigma = np.exp((x[:,1][-1]+ 1) * OLS.params[1] + OLS.params[0])
return rhoI_sigma, rhoP_sigma, q_f, qinverse_f
评论列表
文章目录