def __init__(self, gpuid, queue, results):
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
from keras.datasets import mnist
from keras.utils import to_categorical
Process.__init__(self, name='ModelProcessor')
self._gpuid = gpuid
self._queue = queue
self._results = results
# Load data on the worker
batch_size = 128
num_classes = 10
epochs = 1
# input image dimensions
img_rows, img_cols = 28, 28
# the data, shuffled and split between train and test sets
(x_train, y_train), (self.x_test, self.y_test) = mnist.load_data()
x_train = x_train.reshape(x_train.shape[0],-1)
self.x_test = self.x_test.reshape(self.x_test.shape[0],-1)
x_train = x_train.astype('float32')
self.x_test = self.x_test.astype('float32')
x_train /= 255
self.x_test /= 255
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(self.x_test.shape[0], 'test samples')
idxs = np.arange(x_train.shape[0])
np.random.shuffle(idxs)
num_examples = 12000
self.x_train = x_train[idxs][:num_examples]
self.y_train = y_train[idxs][:num_examples]
# convert class vectors to binary class matrices
self.y_train = to_categorical(self.y_train, num_classes)
self.y_test = to_categorical(self.y_test, num_classes)
评论列表
文章目录