def save_results(self, filename):
# save some samples
fake_categories = np.random.choice(self.num_classes,16)
fake_vectors = to_categorical(fake_categories, self.num_classes+1)
random_value_part = np.random.uniform(0,1,size=[16,100-(self.num_classes+1)])
fake_values = np.concatenate((fake_vectors, random_value_part), axis=1)
#fake_values = np.random.uniform(0,1,size=[16,100])
images = self.generator.predict(fake_values)
plt.figure(figsize=(10,10))
for i in range(images.shape[0]):
plt.subplot(4, 4, i+1)
image = images[i, :, :, :]
if self.img_channels == 1:
image = np.reshape(image, [self.img_rows, self.img_cols])
elif K.image_data_format() == 'channels_first':
image = image.transpose(1,2,0)
# implicit no need to transpose if channels are last
plt.imshow(image, cmap='gray')
plt.axis('off')
plt.tight_layout()
plt.savefig(filename)
plt.close('all')
#def test_results(self, testing_values, testing_labels):
#predictions = self.model.predict(testing_values)
#df = pandas.DataFrame(data=np.argmax(predictions, axis=1), columns=['Label'])
#df.insert(0, 'ImageId', range(1, 1 + len(df)))
# save results
#df.to_csv(self.commandline_args.output, index=False)
评论列表
文章目录