def transform(self, X, y=None):
chars = []
for doc in X:
char_ids = []
for char in doc[:self.maxlen]:
if char in self.vocab:
char_ids.append(self.vocab[char])
else:
char_ids.append(self.vocab[UNK])
char_ids += [self.vocab[PAD]] * (self.maxlen - len(char_ids)) # padding
chars.append(char_ids)
chars = dense_to_one_hot(chars, len(self.vocab))
if y is not None:
y = [self.classes[t] for t in y]
y = to_categorical(y, len(self.classes))
return (chars, y) if y is not None else chars
preprocess_data.py 文件源码
python
阅读 23
收藏 0
点赞 0
评论 0
评论列表
文章目录