def __create_wide_residual_network(nb_classes, img_input, include_top, depth=28, width=8, dropout=0.0):
''' Creates a Wide Residual Network with specified parameters
Args:
nb_classes: Number of output classes
img_input: Input tensor or layer
include_top: Flag to include the last dense layer
depth: Depth of the network. Compute N = (n - 4) / 6.
For a depth of 16, n = 16, N = (16 - 4) / 6 = 2
For a depth of 28, n = 28, N = (28 - 4) / 6 = 4
For a depth of 40, n = 40, N = (40 - 4) / 6 = 6
width: Width of the network.
dropout: Adds dropout if value is greater than 0.0
Returns:a Keras Model
'''
N = (depth - 4) // 6
x = __conv1_block(img_input)
nb_conv = 4
for i in range(N):
x = __conv2_block(x, width, dropout)
nb_conv += 2
x = MaxPooling2D((2, 2))(x)
for i in range(N):
x = __conv3_block(x, width, dropout)
nb_conv += 2
x = MaxPooling2D((2, 2))(x)
for i in range(N):
x = ___conv4_block(x, width, dropout)
nb_conv += 2
x = AveragePooling2D((8, 8))(x)
if include_top:
x = Flatten()(x)
x = Dense(nb_classes, activation='softmax')(x)
return x
评论列表
文章目录