def get_squeezenet(nb_classes, dim_ordering='th'):
base_model = get_squeezenet_top()
x = base_model.layers[-1].output
x = Convolution2D(nb_classes, 1, 1, border_mode='valid', name='conv10')(x)
x = Activation('relu', name='relu_conv10')(x)
x = GlobalAveragePooling2D()(x)
out = Activation('softmax', name='loss')(x)
model = Model(input=base_model.input, output=[out])
return model
a01_squeezenet.py 文件源码
python
阅读 21
收藏 0
点赞 0
评论 0
评论列表
文章目录