def block_SchwartzImage(image,dropoutRate,active=True):
'''
returns flattened output
'''
if active:
image = Convolution2D(64, (8,8) , border_mode='same', activation='relu',
kernel_initializer='lecun_uniform', name='swz_conv0')(image)
image = MaxPooling2D(pool_size=(2, 2), name='swz_maxpool0')(image)
image = Dropout(dropoutRate)(image)
image = Convolution2D(64, (4,4) , border_mode='same', activation='relu',
kernel_initializer='lecun_uniform', name='swz_conv1')(image)
image = MaxPooling2D(pool_size=(2, 2), name='swz_maxpool1')(image)
image = Dropout(dropoutRate)(image)
image = Convolution2D(64, (4,4) , border_mode='same', activation='relu',
kernel_initializer='lecun_uniform', name='swz_conv2')(image)
image = MaxPooling2D(pool_size=(2, 2), name='swz_maxpool2')(image)
image = Dropout(dropoutRate)(image)
image = Flatten()(image)
else:
#image=Cropping2D(crop)(image)#cut almost all of the 20x20 pixels
image = Flatten()(image)
image = Dense(1,kernel_initializer='zeros',trainable=False, name='swz_conv_off')(image)#effectively multipy by 0
return image
评论列表
文章目录