def vgg19(input_shape):
base_model = VGG19(weights='imagenet', include_top=False, input_shape=input_shape)
# add a global spatial average pooling layer
x = base_model.output
x = MaxPooling2D()(x)
# let's add a fully-connected layer
x = Flatten()(x)
x = Dense(512, activation='relu')(x)
x = Dropout(0.5)(x)
#x = Dense(512, activation='relu')(x)
#x = Dropout(0.5)(x)
# and a logistic layer -- let's say we have 200 classes
predictions = Dense(10, activation='softmax')(x)
# this is the model we will train
model = Model(input=base_model.input, output=predictions)
# first: train only the top layers (which were randomly initialized)
# i.e. freeze all convolutional InceptionV3 layers
for layer in base_model.layers:
layer.trainable = False
# compile the model (should be done *after* setting layers to non-trainable)
# model.compile(optimizer=Adam(lr=0.0001), loss='categorical_crossentropy', metrics=['accuracy'])
return model
#return predictions
fgsm_adv_training.py 文件源码
python
阅读 23
收藏 0
点赞 0
评论 0
评论列表
文章目录