def base_model(input_shapes):
from keras.layers import Input
from keras.layers.core import Masking
x_global = Input(shape=input_shapes[0])
x_map = Input(shape=input_shapes[1])
x_ptreco = Input(shape=input_shapes[2])
x = Convolution2D(64, (8,8) , border_mode='same', activation='relu',kernel_initializer='lecun_uniform')(x_map)
x = MaxPooling2D(pool_size=(2, 2))(x)
x = Convolution2D(64, (4,4) , border_mode='same', activation='relu',kernel_initializer='lecun_uniform')(x)
x = MaxPooling2D(pool_size=(2, 2))(x)
x = Convolution2D(64, (4,4) , border_mode='same', activation='relu',kernel_initializer='lecun_uniform')(x)
x = MaxPooling2D(pool_size=(2, 2))(x)
x = Flatten()(x)
x = merge( [x, x_global] , mode='concat')
# linear activation for regression and softmax for classification
x = Dense(128, activation='relu',kernel_initializer='lecun_uniform')(x)
x = merge([x, x_ptreco], mode='concat')
return [x_global, x_map, x_ptreco], x
评论列表
文章目录