def Serious_gluon_model(Inputs,nclasses,dropoutRate=-1):
x = LocallyConnected2D(64, (8,8) ,stride= (4,4) , border_mode='same', activation='relu',kernel_initializer='lecun_uniform')(Inputs[1])
# x = MaxPooling2D(pool_size=(2, 2))(x)
x = Convolution2D(64, (4,4) , 1 , border_mode='same', activation='relu',kernel_initializer='lecun_uniform')(x)
# x = MaxPooling2D(pool_size=(2, 2))(x)
x = Convolution2D(64, (4,4) , 1 , border_mode='same', activation='relu',kernel_initializer='lecun_uniform')(x)
x = MaxPooling2D(pool_size=(2, 2))(x)
x = Flatten()(x)
x = merge( [x, Inputs[0]] , mode='concat')
# linear activation for regression and softmax for classification
x = Dense(128, activation='relu',kernel_initializer='lecun_uniform')(x)
x = Dense(128, activation='relu',kernel_initializer='lecun_uniform')(x)
x = Dense(64, activation='relu',kernel_initializer='lecun_uniform')(x)
x = Dense(64, activation='relu',kernel_initializer='lecun_uniform')(x)
predictions = [Dense(2, activation='linear',init='normal')(x),Dense(nclasses, activation='softmax',kernel_initializer='lecun_uniform')(x)]
model = Model(inputs=Inputs, outputs=predictions)
return model
评论列表
文章目录