def model_config(size):
model = Sequential()
model.add(Conv2D(32, (5, 5), padding='valid', input_shape=(size, size, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(64, (3, 3), padding='valid'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(128, (3, 3), padding='valid'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(64, kernel_initializer='he_normal', bias_initializer='zeros'))
model.add(Activation('tanh'))
# Softmax??
model.add(Dense(label_size, kernel_initializer='he_normal', bias_initializer='zeros'))
model.add(Activation('softmax'))
return model
评论列表
文章目录