def _log_prob(self, k):
k = ops.convert_to_tensor(k, name="k")
logits = self.logits * array_ops.ones_like(
array_ops.expand_dims(k, -1),
dtype=self.logits.dtype)
shape = array_ops.slice(array_ops.shape(logits), [0],
[array_ops.rank(logits) - 1])
k *= array_ops.ones(shape, dtype=k.dtype)
k.set_shape(tensor_shape.TensorShape(logits.get_shape()[:-1]))
return -nn_ops.sparse_softmax_cross_entropy_with_logits(logits, k)
评论列表
文章目录