bijector.py 文件源码

python
阅读 21 收藏 0 点赞 0 评论 0

项目:lsdc 作者: febert 项目源码 文件源码
def _forward(self, x):
    # Pad the last dim with a zeros vector. We need this because it lets us
    # infer the scale in the inverse function.
    y = array_ops.expand_dims(x, dim=-1) if self._static_event_ndims == 0 else x
    ndims = (y.get_shape().ndims if y.get_shape().ndims is not None
             else array_ops.rank(y))
    y = array_ops.pad(y, paddings=array_ops.concat(0, (
        array_ops.zeros((ndims - 1, 2), dtype=dtypes.int32),
        [[0, 1]])))

    # Set shape hints.
    if x.get_shape().ndims is not None:
      shape = x.get_shape().as_list()
      if self._static_event_ndims == 0:
        shape += [2]
      elif shape[-1] is not None:
        shape[-1] += 1
      shape = tensor_shape.TensorShape(shape)
      y.get_shape().assert_is_compatible_with(shape)
      y.set_shape(shape)

    # Since we only support event_ndims in [0, 1] and we do padding, we always
    # reduce over the last dimension, i.e., dim=-1 (which is the default).
    return nn_ops.softmax(y)
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号