def buildConvolution(self, name):
filters = self.params.get('filters')
nb_filter = self.params.get('nb_filter')
assert filters
assert nb_filter
convs = []
for fsz in filters:
layer_name = '%s-conv-%d' % (name, fsz)
conv = Convolution1D(
nb_filter=nb_filter,
filter_length=fsz,
border_mode='valid',
#activation='relu',
subsample_length=1,
init='glorot_uniform',
#init=init,
#init=lambda shape, name: initializations.uniform(shape, scale=0.01, name=name),
W_constraint=maxnorm(self.params.get('w_maxnorm')),
b_constraint=maxnorm(self.params.get('b_maxnorm')),
#W_regularizer=regularizers.l2(self.params.get('w_l2')),
#b_regularizer=regularizers.l2(self.params.get('b_l2')),
#input_shape=(self.q_length, self.wdim),
name=layer_name
)
convs.append(conv)
self.layers['%s-convolution' % name] = convs
评论列表
文章目录