def __init__(self, output_dim,
init='glorot_uniform', inner_init='orthogonal',
activation='tanh', beta_init='zero', gamma_init='one',
W_regularizer=None, U_regularizer=None, b_regularizer=None,
gamma_regularizer=None, beta_regularizer=None,
dropout_W=0., dropout_U=0., **kwargs):
self.output_dim = output_dim
self.activation = activations.get(activation)
self.init = initializations.get(init)
self.inner_init = initializations.get(inner_init)
self.beta_init = initializations.get(beta_init)
self.gamma_init = initializations.get(gamma_init)
self.W_regularizer = regularizers.get(W_regularizer)
self.U_regularizer = regularizers.get(U_regularizer)
self.b_regularizer = regularizers.get(b_regularizer)
self.gamma_regularizer = regularizers.get(gamma_regularizer)
self.beta_regularizer = regularizers.get(beta_regularizer)
self.dropout_W = dropout_W
self.dropout_U = dropout_U
self.epsilon = 1e-5
if self.dropout_W or self.dropout_U:
self.uses_learning_phase = True
super(LN_SimpleRNN, self).__init__(**kwargs)
layer_normalization_RNN.py 文件源码
python
阅读 24
收藏 0
点赞 0
评论 0
评论列表
文章目录