lstm2ntm.py 文件源码

python
阅读 21 收藏 0 点赞 0 评论 0

项目:NTM-Keras 作者: SigmaQuan 项目源码 文件源码
def __init__(self, output_dim, memory_dim=128, memory_size=20,
                 controller_output_dim=100, location_shift_range=1,
                 num_read_head=1, num_write_head=1,
                 init='glorot_uniform', inner_init='orthogonal',
                 forget_bias_init='one', activation='tanh',
                 inner_activation='hard_sigmoid',
                 W_regularizer=None, U_regularizer=None, R_regularizer=None,
                 b_regularizer=None, W_y_regularizer=None,
                 W_xi_regularizer=None, W_r_regularizer=None,
                 dropout_W=0., dropout_U=0., **kwargs):
        self.output_dim = output_dim
        self.init = initializations.get(init)
        self.inner_init = initializations.get(inner_init)
        self.forget_bias_init = initializations.get(forget_bias_init)
        self.activation = activations.get(activation)
        self.inner_activation = activations.get(inner_activation)
        self.W_regularizer = regularizers.get(W_regularizer)
        self.U_regularizer = regularizers.get(U_regularizer)
        self.b_regularizer = regularizers.get(b_regularizer)
        self.dropout_W, self.dropout_U = dropout_W, dropout_U

        if self.dropout_W or self.dropout_U:
            self.uses_learning_phase = True
        super(NTM, self).__init__(**kwargs)
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号