seq2seq.py 文件源码

python
阅读 25 收藏 0 点赞 0 评论 0

项目:seqGan_chatbot 作者: zpppy 项目源码 文件源码
def tied_rnn_seq2seq(encoder_inputs, decoder_inputs, cell,
                     loop_function=None, dtype=dtypes.float32, scope=None):
  """RNN sequence-to-sequence model with tied encoder and decoder parameters.

  This model first runs an RNN to encode encoder_inputs into a state vector, and
  then runs decoder, initialized with the last encoder state, on decoder_inputs.
  Encoder and decoder use the same RNN cell and share parameters.

  Args:
    encoder_inputs: A list of 2D Tensors [batch_size x input_size].
    decoder_inputs: A list of 2D Tensors [batch_size x input_size].
    cell: rnn_cell.RNNCell defining the cell function and size.
    loop_function: If not None, this function will be applied to i-th output
      in order to generate i+1-th input, and decoder_inputs will be ignored,
      except for the first element ("GO" symbol), see rnn_decoder for details.
    dtype: The dtype of the initial state of the rnn cell (default: tf.float32).
    scope: VariableScope for the created subgraph; default: "tied_rnn_seq2seq".

  Returns:
    A tuple of the form (outputs, state), where:
      outputs: A list of the same length as decoder_inputs of 2D Tensors with
        shape [batch_size x output_size] containing the generated outputs.
      state: The state of each decoder cell in each time-step. This is a list
        with length len(decoder_inputs) -- one item for each time-step.
        It is a 2D Tensor of shape [batch_size x cell.state_size].
  """
  with variable_scope.variable_scope("combined_tied_rnn_seq2seq"):
    scope = scope or "tied_rnn_seq2seq"
    _, enc_state = rnn.rnn(
        cell, encoder_inputs, dtype=dtype, scope=scope)
    variable_scope.get_variable_scope().reuse_variables()
    return rnn_decoder(decoder_inputs, enc_state, cell,
                       loop_function=loop_function, scope=scope)
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号