GRU.py 文件源码

python
阅读 25 收藏 0 点赞 0 评论 0

项目:R-net 作者: minsangkim142 项目源码 文件源码
def __call__(self, inputs, state, scope=None):
        """Run one step of SRU."""
        with tf.variable_scope(scope or type(self).__name__):  # "SRUCell"
            with tf.variable_scope("x_hat"):
                x = linear([inputs], self._num_units, False)
            with tf.variable_scope("gates"):
                concat = tf.sigmoid(linear([inputs], 2 * self._num_units, True))
                f, r = tf.split(concat, 2, axis = 1)
            with tf.variable_scope("candidates"):
                c = self._activation(f * state + (1 - f) * x)
                # variational dropout as suggested in the paper (disabled)
                # if self._is_training and Params.dropout is not None:
                #     c = tf.nn.dropout(c, keep_prob = 1 - Params.dropout)
            # highway connection
            # Our implementation is slightly different to the paper
            # https://arxiv.org/abs/1709.02755 in a way that highway network
            # uses x_hat instead of the cell inputs. Check equation (7) from the original
            # paper for SRU.
            h = r * c + (1 - r) * x
        return h, c
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号