def build_model(self, features, feature_columns, is_training):
"""See base class."""
self._feature_columns = feature_columns
partitioner = partitioned_variables.min_max_variable_partitioner(
max_partitions=self._num_ps_replicas,
min_slice_size=64 << 20)
with variable_scope.variable_scope(
self._scope,
values=features.values(),
partitioner=partitioner) as scope:
if self._joint_weights:
logits, _, _ = layers.joint_weighted_sum_from_feature_columns(
columns_to_tensors=features,
feature_columns=self._get_feature_columns(),
num_outputs=self._num_label_columns,
weight_collections=[self._scope],
scope=scope)
else:
logits, _, _ = layers.weighted_sum_from_feature_columns(
columns_to_tensors=features,
feature_columns=self._get_feature_columns(),
num_outputs=self._num_label_columns,
weight_collections=[self._scope],
scope=scope)
return logits
评论列表
文章目录