def save_hog_image_comparison(filename):
input_image = io.imread(filename)
gray_image = color.rgb2gray(input_image)
out_filename = "hog/" + filename
# 87% for orientations=8, pixels_per_cell=(4, 4), cells_per_block=(1, 1)
fd, hog_image = hog(gray_image, orientations=8, pixels_per_cell=(4, 4),
cells_per_block=(1, 1), visualise=True)
# io.imsave("hog/" + filename, hog_image)
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 4), sharex=True, sharey=True)
ax1.axis('off')
ax1.imshow(gray_image, cmap=plt.cm.gray)
ax1.set_title('Input image')
ax1.set_adjustable('box-forced')
# Rescale histogram for better display
hog_image_rescaled = exposure.rescale_intensity(hog_image, in_range=(0, 0.02))
ax2.axis('off')
ax2.imshow(hog_image_rescaled, cmap=plt.cm.gray)
ax2.set_title('Histogram of Oriented Gradients')
ax1.set_adjustable('box-forced')
plt.savefig(out_filename)
plt.close()
return hog_image
preprocessing.py 文件源码
python
阅读 22
收藏 0
点赞 0
评论 0
评论列表
文章目录