def model(X, w, w2, w3, w4, w_o, p_drop_conv, p_drop_hid, convs_mult):
l1 = conv_and_pool(X, w, convs_mult, p_drop_conv)
l2 = conv_and_pool(l1, w2, convs_mult, p_drop_conv)
l3 = conv_and_pool(l2, w3, convs_mult, p_drop_conv)
l4 = rectify(conv2d(l3, w4))
l4 = dropout(l4, p_drop_hid)
l4 = T.flatten(l4, outdim=2)
pyx = nn.nonlinearities.softmax(T.dot(l4, w_o))
return pyx
评论列表
文章目录