def run_lstm_mnist(lstm_cell=BasicLSTMCell, hidden_size=32, batch_size=256, steps=1000):
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
learning_rate = 0.001
file_logger = FileLogger('log.tsv', ['step', 'training_loss', 'training_accuracy'])
x = tf.placeholder('float32', [batch_size, 784, 2 if lstm_cell == PhasedLSTMCell else 1])
y_ = tf.placeholder('float32', [batch_size, 10])
initial_states = (tf.random_normal([batch_size, hidden_size], stddev=0.1),
tf.random_normal([batch_size, hidden_size], stddev=0.1))
outputs, _ = dynamic_rnn(lstm_cell(hidden_size), x, initial_state=initial_states, dtype=tf.float32)
rnn_out = tf.squeeze(outputs[:, -1, :])
fc0_w = create_weight_variable('fc0_w', [hidden_size, 10])
fc0_b = create_bias_variable('fc0_b', [10])
y = tf.matmul(rnn_out, fc0_w) + fc0_b
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=y, labels=y_))
grad_update = tf.train.AdamOptimizer(learning_rate).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
sess = tf.Session(config=tf.ConfigProto(log_device_placement=False))
sess.run(tf.global_variables_initializer())
def transform_x(_x_):
if lstm_cell == PhasedLSTMCell:
t = np.reshape(np.tile(np.array(range(784)), (batch_size, 1)), (batch_size, 784))
return np.squeeze(np.stack([_x_, t], axis=2))
t_x = np.expand_dims(_x_, axis=2)
return t_x
for i in range(steps):
batch = mnist.train.next_batch(batch_size)
st = time()
tr_loss, tr_acc, _ = sess.run([cross_entropy, accuracy, grad_update],
feed_dict={x: transform_x(batch[0]), y_: batch[1]})
print('Forward-Backward pass took {0:.2f}s to complete.'.format(time() - st))
file_logger.write([i, tr_loss, tr_acc])
file_logger.close()
mnist_phased_lstm.py 文件源码
python
阅读 20
收藏 0
点赞 0
评论 0
评论列表
文章目录