def apply(self, is_train, inputs, mask=None):
cell = self.cell_spec(is_train)
batch_size = inputs.shape.as_list()[0]
if self.learn_initial:
initial = self.cell_spec.build_initial_state_var(batch_size, cell)
else:
initial = None
return dynamic_rnn(cell, inputs, mask, initial, dtype=tf.float32)[0]
评论列表
文章目录