gst_seq2seq.py 文件源码

python
阅读 19 收藏 0 点赞 0 评论 0

项目:Deep-Reinforcement-Learning-for-Dialogue-Generation-in-tensorflow 作者: liuyuemaicha 项目源码 文件源码
def basic_rnn_seq2seq(
    encoder_inputs, decoder_inputs, cell, dtype=dtypes.float32, scope=None):
  """Basic RNN sequence-to-sequence model.

  This model first runs an RNN to encode encoder_inputs into a state vector,
  then runs decoder, initialized with the last encoder state, on decoder_inputs.
  Encoder and decoder use the same RNN cell type, but don't share parameters.

  Args:
    encoder_inputs: A list of 2D Tensors [batch_size x input_size].
    decoder_inputs: A list of 2D Tensors [batch_size x input_size].
    cell: rnn_cell.RNNCell defining the cell function and size.
    dtype: The dtype of the initial state of the RNN cell (default: tf.float32).
    scope: VariableScope for the created subgraph; default: "basic_rnn_seq2seq".

  Returns:
    A tuple of the form (outputs, state), where:
      outputs: A list of the same length as decoder_inputs of 2D Tensors with
        shape [batch_size x output_size] containing the generated outputs.
      state: The state of each decoder cell in the final time-step.
        It is a 2D Tensor of shape [batch_size x cell.state_size].
  """
  with variable_scope.variable_scope(scope or "basic_rnn_seq2seq"):
    _, enc_state = rnn.rnn(cell, encoder_inputs, dtype=dtype)
    return rnn_decoder(decoder_inputs, enc_state, cell)
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号