def compute_states(self,emb):
def unpack_sequence(tensor):
return tf.unpack(tf.transpose(tensor, perm=[1, 0, 2]))
with tf.variable_scope("Composition",initializer=
tf.contrib.layers.xavier_initializer(),regularizer=
tf.contrib.layers.l2_regularizer(self.reg)):
cell = rnn_cell.LSTMCell(self.hidden_dim)
#tf.cond(tf.less(self.dropout
#if tf.less(self.dropout, tf.constant(1.0)):
cell = rnn_cell.DropoutWrapper(cell,
output_keep_prob=self.dropout,input_keep_prob=self.dropout)
#output, state = rnn.dynamic_rnn(cell,emb,sequence_length=self.lngths,dtype=tf.float32)
outputs,_=rnn.rnn(cell,unpack_sequence(emb),sequence_length=self.lngths,dtype=tf.float32)
#output = pack_sequence(outputs)
sum_out=tf.reduce_sum(tf.pack(outputs),[0])
sent_rep = tf.div(sum_out,tf.expand_dims(tf.to_float(self.lngths),1))
final_state=sent_rep
return final_state
评论列表
文章目录