def test_covariance_matrices():
arr_1 = np.array([[[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 1, 1, 1, 1, 0, 0, 0],
[0, 1, 1, 1, 1, 1, 0, 0, 0],
[0, 1, 1, 1, 1, 1, 2, 2, 0],
[0, 1, 1, 1, 1, 1, 2, 2, 0],
[0, 1, 1, 1, 1, 1, 0, 3, 3],
[0, 0, 0, 0, 0, 0, 0, 3, 3],
[0, 0, 0, 0, 0, 3, 3, 3, 3]],
[[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 1, 1, 1, 1, 0, 0, 0],
[0, 1, 1, 1, 1, 1, 0, 0, 0],
[0, 1, 1, 1, 1, 1, 2, 2, 0],
[0, 1, 1, 1, 1, 1, 2, 2, 0],
[0, 1, 1, 1, 1, 1, 0, 0, 3],
[0, 0, 0, 0, 0, 0, 0, 3, 3],
[0, 0, 0, 0, 0, 0, 3, 3, 3]]
])
im1 = nib.Nifti1Image(arr_1, np.eye(4))
cov = covariance_matrices(im1, [1, 2, 3])
assert len(cov) == 3
for i in cov:
assert_array_equal(i.shape, [3, 3])
if np.count_nonzero(i - np.diag(np.diagonal(i))) == 0:
assert_array_equal(np.diag(np.diag(i)), i)
cov1 = covariance_matrices(im1, [1, 2, 3, 4])
assert_array_equal(cov1[-1], np.nan * np.ones([3, 3]))
test_caliber_distances.py 文件源码
python
阅读 22
收藏 0
点赞 0
评论 0
评论列表
文章目录