def load_channels(self, normalize=False):
modalities = []
modalities.append(nib.load(self.T2_FILE))
modalities.append(nib.load(self.T1_FILE))
channels = np.zeros(modalities[0].shape + (2,), dtype=np.float32)
for index_mod, mod in enumerate(modalities):
if self.data_augmentation:
channels[:, :, :, index_mod] = flip_plane(np.asarray(mod.dataobj), plane=self.data_augmentation)
else:
channels[:,:,:,index_mod] = np.asarray(mod.dataobj)
if normalize:
channels[:, :, :, index_mod] = normalize_image(channels[:,:,:,index_mod], mask = self.load_ROI_mask() )
return channels
评论列表
文章目录