def __init__(self, num_classes, pretrained=True):
super(ResNetDUCHDC, self).__init__()
resnet = models.resnet152()
if pretrained:
resnet.load_state_dict(torch.load(res152_path))
self.layer0 = nn.Sequential(resnet.conv1, resnet.bn1, resnet.relu, resnet.maxpool)
self.layer1 = resnet.layer1
self.layer2 = resnet.layer2
self.layer3 = resnet.layer3
self.layer4 = resnet.layer4
for n, m in self.layer3.named_modules():
if 'conv2' in n or 'downsample.0' in n:
m.stride = (1, 1)
for n, m in self.layer4.named_modules():
if 'conv2' in n or 'downsample.0' in n:
m.stride = (1, 1)
layer3_group_config = [1, 2, 5, 9]
for idx in range(len(self.layer3)):
self.layer3[idx].conv2.dilation = (layer3_group_config[idx % 4], layer3_group_config[idx % 4])
self.layer3[idx].conv2.padding = (layer3_group_config[idx % 4], layer3_group_config[idx % 4])
layer4_group_config = [5, 9, 17]
for idx in range(len(self.layer4)):
self.layer4[idx].conv2.dilation = (layer4_group_config[idx], layer4_group_config[idx])
self.layer4[idx].conv2.padding = (layer4_group_config[idx], layer4_group_config[idx])
self.duc = _DenseUpsamplingConvModule(8, 2048, num_classes)
duc_hdc.py 文件源码
python
阅读 22
收藏 0
点赞 0
评论 0
评论列表
文章目录