def _conv(self, input, in_channels, out_channels, name):
with tf.variable_scope(name):
filter_size_h, filter_size_w = self.__convKernelSize
filt = tf.get_variable(name=name + "_filters",
shape=[filter_size_h, filter_size_w, in_channels, out_channels],
initializer=init_ops.random_normal_initializer(stddev=0.01))
conv_biases = tf.get_variable(name=name + "_biases",
shape=[out_channels],
initializer=init_ops.random_normal_initializer(stddev=0.01))
conv = tf.nn.conv2d(input, filt, [1, 1, 1, 1], padding='SAME')
bias = tf.nn.bias_add(conv, conv_biases)
relu = tf.nn.relu(bias)
return relu
评论列表
文章目录