def testEmbeddingColumnWithWeightedSparseColumnForDNN(self):
ids = feature_column.sparse_column_with_keys("ids",
["marlo", "omar", "stringer"])
ids_tensor = sparse_tensor.SparseTensor(
values=["stringer", "stringer", "marlo"],
indices=[[0, 0], [1, 0], [1, 1]],
dense_shape=[3, 2])
weighted_ids = feature_column.weighted_sparse_column(ids, "weights")
weights_tensor = sparse_tensor.SparseTensor(
values=[10.0, 20.0, 30.0],
indices=[[0, 0], [1, 0], [1, 1]],
dense_shape=[3, 2])
features = {"ids": ids_tensor, "weights": weights_tensor}
embeded_sparse = feature_column.embedding_column(
weighted_ids,
1,
combiner="sum",
initializer=init_ops.ones_initializer())
output = feature_column_ops.input_from_feature_columns(features,
[embeded_sparse])
with self.test_session():
variables_lib.global_variables_initializer().run()
data_flow_ops.tables_initializer().run()
# score: (sum of weights)
self.assertAllEqual(output.eval(), [[10.], [50.], [0.]])
feature_column_ops_test.py 文件源码
python
阅读 18
收藏 0
点赞 0
评论 0
评论列表
文章目录