def testEmbeddingColumnWithMaxNormForDNN(self):
hashed_sparse = feature_column.sparse_column_with_hash_bucket("wire", 10)
wire_tensor = sparse_tensor.SparseTensor(
values=["omar", "stringer", "marlo"],
indices=[[0, 0], [1, 0], [1, 1]],
dense_shape=[3, 2])
features = {"wire": wire_tensor}
embedded_sparse = feature_column.embedding_column(
hashed_sparse,
1,
combiner="sum",
initializer=init_ops.ones_initializer(),
max_norm=0.5)
output = feature_column_ops.input_from_feature_columns(features,
[embedded_sparse])
with self.test_session():
variables_lib.global_variables_initializer().run()
# score: (number of values * 0.5)
self.assertAllClose(output.eval(), [[0.5], [1.], [0.]])
feature_column_ops_test.py 文件源码
python
阅读 18
收藏 0
点赞 0
评论 0
评论列表
文章目录