def motion_tower(stage_status, image_features):
with tf.variable_scope(stage_status):
with tf.variable_scope('Ptrain'):
if FLAGS.ss_bottleneck_arch:
assert (FLAGS.early_split == False)
image_features = slim.conv2d(image_features, FLAGS.city_num_classes, [1, 1], 1,
normalizer_fn=None,
activation_fn=None,
biases_initializer=init_ops.zeros_initializer,
padding='VALID',
scope='segmentation_fc8',
reuse=True if FLAGS.city_data else False)
# reduce the dimensionality from the conv5 feature map
with tf.variable_scope('motion_tower'):
# size 224/8 = 28
image_features = slim.conv2d(image_features, 64, [5, 5], 3, scope='motion1')
# size 9
image_features = slim.conv2d(image_features, 128, [5, 5], 3, scope='motion2')
# size 3
return image_features
评论列表
文章目录