def gen_output(lmdbname, file_list):
X = np.zeros((len(file_list), 1, HEIGHT, WIDTH), dtype=np.uint8)
map_size = X.nbytes * 3
env = lmdb.open(lmdbname, map_size=map_size)
count = 0
for i in file_list:
print count
with env.begin(write=True) as txn:
filename = os.path.join(DIR, "SegmentationClass", i + ".png")
m = deepcopy(np.asarray(Image.open(filename)))
for x in range(m.shape[0]):
for y in range(m.shape[1]):
if m[x][y] == 255:
m[x][y] = 0
datum = caffe.proto.caffe_pb2.Datum()
datum.channels = 1
datum.height = m.shape[0]
datum.width = m.shape[1]
datum.data = m.tobytes()
str_id = i
txn.put(str_id.encode("ascii"), datum.SerializeToString())
count += 1
评论列表
文章目录