def scatters_in_3d(samples, is_labelled = False):
# PCA ???2??????
pca = PCA(n_components=3)
reduced_data = pca.fit_transform(samples)
fig = plt.figure()
ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=9, azim=-170)
for c, rng in [('r', (0, 80)), ('b', (80, 120))]:
xs = reduced_data[rng[0]:rng[1], 0]
ys = reduced_data[rng[0]:rng[1], 1]
zs = reduced_data[rng[0]:rng[1], 2]
ax.scatter(xs, ys, zs, c=c)
ax.w_xaxis.set_ticklabels([])
ax.w_yaxis.set_ticklabels([])
ax.w_zaxis.set_ticklabels([])
if is_labelled:
for ix in np.arange(len(samples)):
ax.text(reduced_data[ix, 0], reduced_data[ix, 1],reduced_data[ix, 2],
str(ix+1), verticalalignment='center', fontsize=10)
plt.show()
# ????????kNN?????
knn_clf.py 文件源码
python
阅读 23
收藏 0
点赞 0
评论 0
评论列表
文章目录