def __init__(self, sess, config, is_crop=True,
batch_size=64, output_size=64,
z_dim=100, gf_dim=64, df_dim=64,
gfc_dim=1024, dfc_dim=1024, c_dim=3, dataset_name='default',
checkpoint_dir=None, sample_dir=None, log_dir=None):
"""
Args:
sess: TensorFlow session
batch_size: The size of batch. Should be specified before training.
output_size: (optional) The resolution in pixels of the images. [64]
z_dim: (optional) Dimension of dim for Z. [100]
gf_dim: (optional) Dimension of gen filters in first conv layer. [64]
df_dim: (optional) Dimension of discrim filters in first conv layer. [64]
gfc_dim: (optional) Dimension of gen units for for fully connected layer. [1024]
dfc_dim: (optional) Dimension of discrim units for fully connected layer. [1024]
c_dim: (optional) Dimension of image color. For grayscale input, set to 1. [3]
"""
self.sess = sess
self.config = config
self.is_crop = is_crop
self.is_grayscale = (c_dim == 1)
self.batch_size = batch_size
self.sample_size = batch_size
self.output_size = output_size
self.sample_dir = sample_dir
self.log_dir=log_dir
self.checkpoint_dir = checkpoint_dir
self.z_dim = z_dim
self.gf_dim = gf_dim
self.df_dim = df_dim
self.gfc_dim = gfc_dim
self.dfc_dim = dfc_dim
self.c_dim = c_dim
# batch normalization : deals with poor initialization helps gradient flow
self.d_bn1 = batch_norm(name='d_bn1')
self.d_bn2 = batch_norm(name='d_bn2')
self.d_bn3 = batch_norm(name='d_bn3')
self.g_bn0 = batch_norm(name='g_bn0')
self.g_bn1 = batch_norm(name='g_bn1')
self.g_bn2 = batch_norm(name='g_bn2')
self.g_bn3 = batch_norm(name='g_bn3')
self.dataset_name = dataset_name
self.build_model()
评论列表
文章目录