pot.py 文件源码

python
阅读 23 收藏 0 点赞 0 评论 0

项目:adagan 作者: tolstikhin 项目源码 文件源码
def conv_up_res(self, opts, noise, is_training, reuse, keep_prob):
        output_shape = self._data.data_shape
        num_units = opts['g_num_filters']

        batch_size = tf.shape(noise)[0]
        num_layers = opts['g_num_layers']
        data_height = output_shape[0]
        data_width = output_shape[1]
        data_channels = output_shape[2]
        height = data_height / 2**num_layers
        width = data_width / 2**num_layers

        h0 = ops.linear(
            opts, noise, num_units * height * width, scope='h0_lin')
        h0 = tf.reshape(h0, [-1, height, width, num_units])
        h0 = tf.nn.relu(h0)
        layer_x = h0
        for i in xrange(num_layers-1):
            layer_x = tf.image.resize_nearest_neighbor(layer_x, (2 * height, 2 * width))
            layer_x = ops.conv2d(opts, layer_x, num_units / 2, d_h=1, d_w=1, scope='conv2d_%d' % i)
            height *= 2
            width *= 2
            num_units /= 2

            if opts['g_3x3_conv'] > 0:
                before = layer_x
                for j in range(opts['g_3x3_conv']):
                    layer_x = ops.conv2d(opts, layer_x, num_units, d_h=1, d_w=1,
                                         scope='conv2d_3x3_%d_%d' % (i, j),
                                         conv_filters_dim=3)
                    layer_x = tf.nn.relu(layer_x)
                layer_x += before  # Residual connection.

            if opts['batch_norm']:
                layer_x = ops.batch_norm(opts, layer_x, is_training, reuse, scope='bn%d' % i)
            layer_x = tf.nn.relu(layer_x)
            if opts['dropout']:
                _keep_prob = tf.minimum(
                    1., 0.9 - (0.9 - keep_prob) * float(i + 1) / (num_layers - 1))
                layer_x = tf.nn.dropout(layer_x, _keep_prob)

        layer_x = tf.image.resize_nearest_neighbor(layer_x, (2 * height, 2 * width))
        layer_x = ops.conv2d(opts, layer_x, data_channels, d_h=1, d_w=1, scope='last_conv2d_%d' % i)

        if opts['input_normalize_sym']:
            return tf.nn.tanh(layer_x)
        else:
            return tf.nn.sigmoid(layer_x)
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号