def feature_extract_net(self, lr_image):
end_points = {}
with slim.arg_scope([slim.conv2d, slim.conv2d_transpose],
activation_fn = lrelu,
):
conv = slim.conv2d(lr_image, self.nfc, [3,3], scope = 'conv1')
for l in range(self.level):
for d in range(self.depth):
conv = slim.conv2d(conv, self.nfc, [3,3], scope = 'conv_%d_level_%d'%(l,d))
conv = slim.conv2d_transpose(conv, self.nfc, [4,4], stride = 2, scope = 'residual_level_%d'%(l))
conv = slim.conv2d(conv, 3, [3,3], activation_fn = None, scope = 'conv_level_%d'%(l))
end_points['residual_level_%d'%(l)] = conv
return end_points
评论列表
文章目录