models.py 文件源码

python
阅读 15 收藏 0 点赞 0 评论 0

项目:tf-sr-zoo 作者: MLJejuCamp2017 项目源码 文件源码
def create_discriminator(hr_images_fake, hr_images, cfg):
    n_layers = 3
    layers = []

    input = tf.concat([hr_images_fake, hr_images ], axis = 3)

    conv = slim.conv2d(input, cfg.ndf, [3,3], stride = 2, activation_fn = lrelu, scope = 'layers%d'%(0))
    layers.append(conv)

    for i in range(n_layers):
        out_channels = cfg.ndf*min(2**(i+1), 8)
        stride = 1 if i == n_layers -1 else 2
        conv = slim.conv2d(layers[-1], out_channels, [3,3], stride = stride, activation_fn = lrelu, scope = 'layers_%d'%(i+2))
        layers.append(conv)

    conv = slim.conv2d(layers[-1], 1, [3,3], stride = 1)
    output = tf.sigmoid(conv)
    return output
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号